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Slow waves in microchannel metal waveguides and application to particle acceleration
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Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the
speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter,
one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a
metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic
mode, the electric field has a component along the direction of propagation. Therefore, a strong
exchange of energy can occur between a beam of charged particles and this slow-waveguide mode.
Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of
the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient
electron laser acceleration because the wave can be directly energized by a long-wavelength laser.
Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle
interaction in a channel of reasonable macroscopic size (e.g., �0:6 mm). The dispersion properties
including phase velocity and damping for the slow wave are developed. The performance and other
issues related to laser accelerator applications are discussed.
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I. INTRODUCTION

A conventional metal-wall waveguide supports a series
of waveguide modes. One class of these is transverse
magnetic (TM) waves, which have a forward component
of the electric field. This field component could be used
for energy exchange with a beam of particles except for
the fact that these are ‘‘fast’’ waves with a phase velocity
exceeding c, the speed of light in vacuum. Thus charged
particles, even traveling at �c, rapidly slip out of phase
with the wave. However, under special conditions (e.g.,
proper frequency and channel size) a metal waveguide
supports one slow-wave mode that can have a phase
velocity equal to or less than c. The slow-wave mode
appears only because of the negative dielectric function
in a metal. What makes the slow wave particularly inter-
esting is that for ‘‘microchannel’’ sizes (i.e., waveguides
100’s of �m in diameter) the slow-wave frequency is in
the infrared range. Such a slow wave may be directly
energized by long-wavelength laser light with the proper
polarization. For example, in a cylindrical copper guide
with 0.6-mm diameter, the slow wave can be directly
driven by a CO2 laser (� � 10:6 �m). The laser light is
focused into one end of the guide and propagates along it
in a slow-wave TM mode. Figure 1 illustrates how this
arrangement can be used for charged particle acceleration
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be used for the inverse process whereby coherent light is
extracted from a charged particle beam. However, this
inverse process will not be discussed in this paper.

The outline of this paper is as follows. Section II
develops the dispersion relation in metal waveguides.
The conditions under which the slow-waveguide mode
can appear are identified. Its dispersion properties includ-
ing phase velocity and damping are found. Section III
focuses on the application of slow-waveguide modes to
accelerators. This begins with a discussion of where this
approach fits within the family of accelerator concepts.
The predicted acceleration performance of the slow wave
is considered next followed by a comparison with another
advanced accelerator concept, the laser wakefield accel-
erator (LWFA). Section IV concludes the paper with a
discussion of issues related to the metal microchannel
concept that are appropriate for future investigations.
electron 
copper 

FIG. 1. Laser-particle acceleration in a metal microchannel.
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II. METAL WAVEGUIDE DISPERSION RELATION

A. Electromagnetic waves in simple two-medium
structures

Consider the propagation of waves in a two-medium
structure with wave vectors tangential to the interface
between the media. The most familiar example of this is a
waveguide, as shown in Fig. 2(a), composed of a channel
medium (1) sandwiched between two sections of bound-
ary medium (2). The figure illustrates both the transverse
structure of a waveguide wave (dark line) and its propa-
gation along the guide. The figure portrays a slab guide
(planar sides), but the guide might be cylindrical (hollow
tube), rectangular (rectangular or square tube), or have a
more complicated cross section.

Waves in waveguides appear as a discrete series of
eigenmodes, each with its own characteristics (i.e., wave
number, transverse structure). Common waveguide
modes of interest have a transverse field structure that is
oscillatory in the channel (sideways component of the
wave vector k?) and evanescent at the boundary. In the
channel, there is in effect a transverse standing wave,
which is the sum of a ‘‘forward’’ traveling wave ( � k?)
and a ‘‘reverse’’ traveling wave ( � k?). The oscillatory
structure in the guide [dark line in Fig. 2(a)] is the stand-
ing wave pattern. Depending on the mode number there
can be any number of oscillatory lobes in the channel. An
important feature of waveguide modes when the channel
medium (1) is a vacuum is that their phase velocity !=k
exceeds the speed of light c (! � frequency, k �
wave number � 2�=�).

Under certain conditions (e.g., frequency, dielectric
constants of the media, channel width) one of the wave-
guide modes can have the unusual property that the
transverse component of the wave vector in the channel
is imaginary, k? � ijk?j. In this case the transverse
structure in the channel is also evanescent, as illustrated
(1) k 

(2) 

(2) 

(1) k 

(2) 

(2) 

(b) Special waveguide mode. 

(a) Standard waveguide. 

FIG. 2. Waveguide mode types.

061302-2
in Fig. 2(b). In the example here the two interfaces are
close enough that the field strength in the center of the
channel is still a large fraction of its maximum value,
which is at the surfaces. A profound consequence of
imaginary k? is that in a vacuum channel the phase
velocity of the wave !=k can be less than or equal to c.
Thus, this special eigenmode might be called the slow-
waveguide mode. The synchronous case !=k � c is of
special interest because a relativistic charged particle
moving at c is exactly synchronous with the slow wave
and can be accelerated over distances vastly longer than
the Rayleigh length. The slow-waveguide mode has been
analyzed in the context of a plasma channel (where
region 2 is a plasma) in Ref. [3], where it is called a
‘‘channel wave.’’

The slow-waveguide mode [Fig. 2(b)] is closely related
to another phenomenon called surface waves. The same
conditions that generate a slow wave in a waveguide can
also produce surface waves at a single interface. This
wave is evanescent in both directions away from the
interface. In effect then, the slow-waveguide mode can
be viewed as a pair of overlapped opposing surface waves.

Slow waves are well known in the accelerator com-
munity. However, they typically require slow-wave struc-
tures in which disks, irises, or other obstructions are
inserted into a waveguide, or the guide wall is given a
wavy structure. The appeal of the slow-waveguide mode
discussed here is that no such artificial structures are
needed. A simple waveguide (albeit with a particular
size and dielectric constant) is all that is required. This
slow-waveguide mode travels on the simplest of all pos-
sible slow-wave structures—a smooth waveguide.

In the next sections, the conditions that allow a slow-
waveguide mode are found. After establishing the basic
equations, surface waves are considered first because they
exhibit some features of the slow-waveguide mode, but
their analysis is simpler. Attention then turns to the slow-
waveguide mode in slab and cylindrical guides. Special
attention will be given to the case of a vacuum channel
and a metal or plasma boundary.
B. Basic field equations

For the surface wave or slab channel we adopt a
Cartesian coordinate system where z is the direction of
propagation and x is the coordinate perpendicular to the
interface(s). For a surface wave the interface is at x � 0.
For the slab guide the interfaces are at x � �b, and the
center of the channel is at x � 0. For the cylindrical guide
we adopt a cylindrical coordinate system where z is the
direction of propagation and r is the coordinate perpen-
dicular to the interface at r � b. The center of the chan-
nel is at r � 0.

Nonevolving waves in these guides have the form E �
ÊE�r	 exp
i�kz�!t	�, where the real part is understood.
Here ! is the wave frequency and k is its propagation
061302-2
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constant. In the slab guide r is replaced by x. The primary
interest is in waves with a forward electric field compo-
nent on the axis. In waveguide parlance these are TM
waves since the magnetic field is purely in the � direction
(y direction in the slab case). With E� e�i!t, the wave
propagation is governed by Maxwell’s equation 
r2 �
"�!=c	2�E � 0, where "�!	 is the dielectric function.
The longitudinal electric field in a cylindrical guide is
governed by �

1

r
d
dr

�
r
d
dr

�
��2

�
ÊEz � 0; (1)

� �

�������������������������������
k2 � �!2=c2	"

q
: (2)

Transverse field components are related to the longitu-
dinal component by r  E � 0. (The analogous equation
for a slab guide is similar. Appendix A gives the slab-
guide equivalents both here and for the other equations
that follow.)

The transverse scale parameter � is closely related to
the nature of the propagating mode. A familiar case, the
standard waveguide mode, has imaginary �1 and real �2,
061302-3
where the subscripts 1 and 2 refer to the regions depicted
in Fig. 2(a). Imaginary �1 implies that the wave structure
in the channel is oscillatory, as shown in Fig. 2(a), i.e., the
transverse component of the wave vector k? is real.
(Recall that k? � i�, so that imaginary � yields real
k?.) Real �2 implies that the wave in the boundary region
is evanescent, i.e., nonpropagating. If instead of a guide
with two sides, there is only a single boundary, then this is
the familiar case of total reflection with both incident and
reflected waves in region 1 and no transmitted waves in
region 2.

However, unique behavior arises if both �1 and �2 are
real, i.e., evanescent waves in both directions away from
the interface, as illustrated by the special waveguide
mode in Fig. 2. For real �1 (or predominantly real) and
a vacuum channel ("1 � 1), Eq. (2) implies that !=kR �
c (kR is the real part of k), i.e., the special waveguide
mode is a slow-wave mode, with phase velocity equal to
or below the speed of light.

C. Slow-waveguide mode without damping

The solutions to Eq. (1) for a cylindrical guide are
jrj � b : ÊEz � G1I0��1r	; ÊEr � �i�k=�1	G1I1��1r	; (3a)

jrj > b : ÊEz � G2K0��2r	; ÊEr � i�k=�2	G2K1��2r	; (3b)
where G1 and G2 are constants, and I0, I1, K0, and K1 are
modified Bessel functions.

In the event of imaginary �1, the Bessel functions in
Eq. (3a) convert as follows: I0��1r	 ! J0�j�1jr	 and
�iI1��1r	 ! J1�j�1jr	. From Maxwell’s equations, the
solutions given by Eq. (3) must satisfy the continuity
conditions at the interface (r � b) between the channel
and the boundary media, 
"ÊEr� � 0 and 
ÊEz� � 0, where
the square brackets denote the jump at the interface.
Eliminating G1 and G2 results in

"1
I1��1b	

�1bI0��1b	
� �"2

K1��2b	
�2bK0��2b	

; (4)

with �1 and �2 given by Eq. (2). Equation (4) represents
the dispersion relation since � � ��!; k	 and " � "�!	,
i.e., it governs the relationship between ! and k. For
imaginary �1 the fraction on the left side of Eq. (4)
becomes J1�j�1jb	=
j�1jbJ0�j�1jb	�. Equation (4) is the
same as Eq. (9) in Ref. [3]. For a surface wave the
dispersion relation is simpler: "1=�1 � �"2=�2.

For the slow-waveguide mode [see Fig. 2(b)], the mode
has evanescent fields in both directions away from the
interface, i.e., both �1 and �2 are predominantly real.
Inspection of the dispersion relation, Eq. (4), gives the
necessary condition for such a mode to exist. (This is
most clear in the case of purely real ", i.e., lossless
propagation with no damping of the mode.) The neces-
sary condition is that the dielectric constants on the two
sides of the interface must have opposite sign. Thus, for
example, if there is a vacuum in the channel, "1 � 1,
then the dielectric constant in the boundary "2 must be
negative.

Negative dielectric constant occurs in plasmas above
the critical density and in metals for optical and lower
frequencies. In a metal the dielectric function is (Ref. [4])

"�!	 � "0 �!2
p=!�!� i�	; (5)

where "0 ( � 1) is the dipole’s contribution, !p �
�4�e2n=me	

1=2 is the plasma frequency based on the
density of electrons in the conduction band, and � is the
damping constant. Electrons in the conduction band are
‘‘free’’ electrons in the sense that they have zero reso-
nance frequency. Noble metals, such as gold, silver, and
copper, have a single conduction-band electron so that the
density of these electrons is the same as the atomic
density. In fully ionized plasmas "0 � 1 and n is the
full electron density. In this section we shall limit our
attention to the undamped case � � 0. The damped case
will be addressed in Sec. II D.

The dispersion relation, Eq. (4), is an eigenvalue equa-
tion with an infinite number of solutions. A more illumi-
nating form of it employs the parameter � � ��a1b	

2,
where

� � �!2=c2 � k2	b2: (6)

Equation (6) follows from Eq. (2). For a vacuum channel
("1 � 1), observe that � � 0 gives normal waveguide
061302-3
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modes with imaginary �1, and �< 0 gives the slow-
waveguide mode with real �1. In terms of � the wave
number is k � �!2=c2 ��=b2	1=2. Using the dielectric
function "2 from Eq. (5) (with � � 0), the dispersion
relation Eq. (4) becomes

F��	 �
�!2

p2

!2 � 1

� K1�
����������������������
k2p2b

2 ��
q

	����������������������
k2p2b

2 ��
q

 K0�
����������������������
k2p2b

2 ��
q

	
; (7)

where kp2 � !p2=c. The F function here for a cylindrical
guide is defined as

F��	 �
�

J1�
����
�

p
	=

����
�

p
J0�

����
�

p
	; � � 0;

I1�
���������
��

p
	=

���������
��

p
I0�

���������
��

p
	; �< 0

�
: (8)

The dispersion relation Eq. (7) has an infinite number
of discrete solutions for �, namely, the eigenvalues �n,
n � 1; 2; . . . .

A waveguide mode is quite different from a surface
wave. In a surface wave with a specified ‘‘drive’’ fre-
quency !, there is a single propagating wave number k,
except in the forbidden frequency gap in which no wave
propagates. By contrast, the waveguide dispersion rela-
tion produces an infinite number of discrete solutions, one
for each eigenvalue �n, each of which corresponds to a
particular value of k. Note that a surface wave with !
below the forbidden band is analogous to the slow-wave-
guide mode.

The nature of the solutions to the dispersion relation
Eq. (7) can be seen by a graphical analysis. The eigenval-
ues are portrayed graphically in Fig. 3 for a cylindrical
guide. The solid black lines are the F��	 function on the
left-hand side (LHS) of Eq. (7), where it exhibits an
infinite series of singular points at � � �2�m� 1=2	2,
for m � 1; 2; . . . . The right-hand side (RHS) of Eq. (7)
can be approximated for a metal boundary with optical or
lower frequencies, !� !p2. For low-index eigenvalues,
� � O�1	 and the expression k2p2b

2 within the square
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FIG. 3. (Color) Graphic portrayal of eigenvalues for cylindrical
guide.
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roots on the RHS dominates. In this case, the RHS �
kp2=k

2b � �2=2��p2b, where the plasma wavelength in
the metal is �p2 � 2�=kp2 and the wavelength is � �
2�c=!. [Note that for large arguments the factor on the
RHS, K1�x	=K0�x	 ! 1.] Thus the RHS is roughly inde-
pendent of � (since �� k2p2b

2) and can be portrayed
graphically as a horizontal red dashed line in Fig. 3.

Consider two examples:
(i) X-band radio frequencies (� � 33 cm). Assume a

copper guide diameter 2b � 4 cm. Then the RHS � 7�
106. The eigenvalues occur wherever F��	 equals this
value (e.g., see the intersection of the solid and the dashed
lines in Fig. 3). Since the RHS is so large, the intersections
occur very close to the singularities of F��	. The first
eigenvalue is then �1 � 5:78 and successive eigenvalues
are approximately �n � �2�n� 1=2	2.

(ii) CO2 laser (� � 10:6 �m). Assume a copper guide
diameter 2b � 606 �m. Then the RHS � 1=2. This value
is illustrated by the red dashed line in Fig. 3. Here the
lowest eigenvalue (crossing point) is �1 � 0. This gives a
phase velocity of c, i.e., a slow-waveguide mode. Indeed
this is the so-called synchronous case where the phase
velocity of the wave exactly matches the speed of a highly
relativistic particle.

Consider next the synchronous case. Setting the LHS �
RHS, the dispersion relation can be expressed in the
simple form

F��	 � bsyn=2b; (9)

where the synchronous (!=k � c) guide size in the un-
damped case is given by

bsyn0 � �2=��p2: (10)

For near synchronism (small j�j), the small-argument
expansion of F��	 can be used

!2

c2
� k2 �

8

b2

�
bsyn0
b

� 1

�
: (11)

Inspection of Eq. (11) shows that if b > bsyn0, the phase
velocity is slower than c, and if b < bsyn0, the phase
velocity is faster than c. The group velocity vg �
d!=dk is slightly less than c. Using Eqs. (10) and (11)
and assuming near-synchronous conditions, b � bsyn0,
the group velocity is vg � c�1� 2�2=�2b2	.

Given the frequency !, the guide radius b, and the
boundary material, the lowest eigenvalue �1, and hence
its wave number k � k1, are determined in the manner
described next. If the frequency is varied, then the rela-
tionship between k1 on! can be found, i.e., the dispersion
curve. The dispersion curve has !=k � c over a signifi-
cant range of k, so it is helpful to plot the difference of the
phase velocity from c, namely, !=k� 1 vs k. Figure 4
shows this dependence for the lowest mode in cylindrical
and slab guides, and for a surface wave. The guide ex-
amples assume a ‘‘microchannel’’ with diameter (width)
061302-4
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FIG. 4. (Color) Dispersion curves for various microchannel
configurations. Plotted is relative phase velocity !=ck� 1 vs
wave number. The guide examples assume b � 300 �m. The
reference wavelength �ref � 2�=kref � 10:6 �m.
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2b � 0:6 mm. The points where the eigenvalue equals �2
are marked with dashed horizontal lines. In the applica-
tion to an accelerator, j!=ck� 1j must be small in order
to avoid rapid dephasing of the wave relative to a charged
particle moving at c. This and other accelerator-related
questions are taken up in the next section.

Perfect synchronism !=k � c occurs for a particular
guide size given by Eq. (10). Table I compares the cylin-
drical guide sizes for a ‘‘standard’’ waveguide for the X
band and a synchronous waveguide. In the standard ex-
ample, !=k �

���
2

p
c is assumed as being representative.

Two laser frequencies are also shown. The standard wave-
guide diameters are comparable to the wavelength,
whereas the synchronous guide diameters are usually
much larger than a wavelength. The synchronous guide
at rf frequencies is enormous and impractical. On the
other hand, the short-wavelength laser example has a
guide that is very tiny making its fabrication problematic.
The infrared (CO2) laser example is more interesting,
with a small, but still macroscopic guide diameter of
�0:6 mm. For this example the group velocity is vg �
0:999747c, i.e., extremely close to c. Thus, the energy of
the traveling wave moves at nearly the same speed as the
relativistic particle beam.
TABLE II. Damping constant ��sec 	.

Silver 2:6� 1013

Gold 3:7� 1013

Copper 4:0� 1013
D. Slow-waveguide mode with damping

Damping introduces an imaginary part to the dielec-
tric function in the metal boundary. As a result, imagi-
TABLE I. Guide d

Wave source Wavelength � ‘‘Stan

X band rf 4 cm
CO2 laser 10:6 �m
Ti-sapphire laser 0:8 �m
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nary parts will appear in the eigenvalue �, the radial
structure constants �1 and �2, and the propagation con-
stant, k. The latter causes wave damping. This damping
varies greatly from one metal to another. The usual ex-
pression for the dielectric constant in terms of the con-
ductivity is " � "0 � i4�'=!. Comparing this with
Eq. (5), the conductivity is ' � !2

p=4���� i!	. The
damping constant � can be inferred from conventional
conductivity at low frequencies (!� �). Table II shows
the damping constant for noble metals. These are factors
of 4 or more lower than the CO2 laser frequency ! �
1:78� 1014 sec�1.

For optical or lower frequencies and metals, !p2 � !.
The dielectric function Eq. (5) is then "2 �
���=�p2	

2�1� i�=!	�1, where �p2 � 2�c=!p2 is the
plasma wavelength in the boundary region. Since j"2j �
1, the radial structure constant Eq. (2) in the boundary
region is�2 � �2�=�	

����������
�"2

p
. Then the dispersion relation

is

F��R � i�I	 �
bsyn0
2b

f1��=!	
1� if2��=!	�; (12)

where �R and �I are the real and imaginary parts of the
eigenvalue, respectively,

�R � 
!2=c2k2R � 1� �kI=kR	
2�k2Rb

2;

�I � �2�kI=kR	k2Rb
2;

(13)

and the damping constant functions are defined as

f1�x	 �

�����������������������������������������
1� x2

p
� 1

2�1� x2	

s
; f2�x	 �

�����������������������������������������
1� x2

p
� 1��������������

1� x2
p

� 1

s
:

(14)

The weak damping (�=! < 1) limits of these functions
are f1 � 1� 3x2=8 and f2 � x=2. For the simplified
treatment that follows in this section, we assume that
the eigenvalue is small, j�j � 1. This allows the small-
argument expansion to be used in Eq. (8), F � �1=2	�1�
�=8). An optimized application might favor values of �
iameter examples.

dard’’ guide (2b) Synchronous (2bsyn0)

4.4 cm 4.3 km
12 �m 0.6 mm
0:9 �m 3:5 �m

061302-5



TABLE III. Length scales for cylindrical metal guides (� �
10:6 �m).

Wall bsyn bmin (�m) 1=kI
material (�m) for Lph � 10 cm (cm)

Silver 300 237 18.4
Gold 298 235 12.8
Copper 297 234 11.8
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comparable to unity, as will be discussed later. The effect
of finite � on the analysis is addressed in Appendix B.

Solving the real and imaginary parts of Eq. (12) leads
to expressions for the two key quantities (!=ckR � 1) and
(kI=kR). The former is proportional to the dephasing rate,
i.e., the rate a particle moving at c slips out of phase with
the wave, and the latter is related to the wave damping.
This is seen from the complex phasor in the electric fields,
exp
i�kz�!t	� � exp
�kIz� i�kRz�!t	�. Clearly !=kR
is the phase velocity of the wave and 1=kI is the damping
length. The solution for these two key quantities in the
j�j � 1 approximation is

!=ckR � 1 �
�2p2
�2
b2syn0
b2

�
1�

bsyn0
b
f1 �

�2p2
2�2

b4syn0
b4

f21f
2
2

�
;

(15)

1=kI �
�3

2��2p2

b3

b3syn0
�f1f2	�1: (16)

The factor appearing in Eq. (15), �2p2=2�
2, is usually

quite small, e.g., for a copper guide and a CO2 laser it is
6� 10�5.

Equations (15) and (16) give rise to three key length
scales of the slow-waveguide mode: the channel size for
perfect synchronism bsyn, the damping length 1=kI, and
the dephasing distance Lph. The synchronous channel size
bsyn is found by solving Eq. (15) for the case !=ckR � 1,

bsyn � bsyn0  f1

�
1�

�2p2
2�2

f22
f21

�O��4p2=�
4	

�
: (17)

Since �p2=� is quite small, bsyn � bsyn0f1, where bsyn0 is
the undamped result, i.e., Eq. (10). The damping length
was given already by Eq. (16). The dephasing distance Lph

is the distance in which the wave phase slips by � relative
to a particle moving at c, Lph � �=2j1� ckR=!j, where
!=ckR � 1 is a measure of the dephasing rate. In the
synchronous case !=ckR � 1 so that the dephasing dis-
tance is infinite. For channel sizes that differ from the
synchronous value in Eq. (17), the dephasing distance
using Eq. (15) is

Lph �
�3

2�2p2

�
b
bsyn

�
2







1� bsynb �O��2p2=�

2	








�1
: (18)

For channels larger than the synchronous size, Lph has a
minimum of 27�3=8�2p2 at b � �3=2	bsyn0. Thus, for the
CO2 laser wavelength and a copper boundary, the mini-
mum value of Lph is 29 cm. However, b > bsyn0 causes an
electric field minimum on the axis. Of more interest is the
case b < bsyn0 because it has a peaked field on axis. In this
case, if the minimum tolerable Lph is specified, the mini-
mum allowed b can be found using Eq. (18).

Table III shows the length scales for a cylindrical guide
made of a noble metal. Small, but reasonable size micro-
channels support the slow-waveguide mode. The synchro-
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nous channel diameter is 2b� 600 �m, i.e., more than
half a millimeter. Furthermore, the dephasing rate is
somewhat insensitive to channel size. The damping
lengths (synchronous channel) exceed 10 cm.

III. APPLICATION TO LASER-PARTICLE
ACCELERATION

A. Relationship to other acceleration techniques

Laser-particle acceleration is a promising application
of the laser-driven metal microchannel, as illustrated in
Fig. 1. Before discussing this possibility, it is helpful to
note where it fits within the family of various laser
acceleration techniques. The microchannel accelerator is
characterized by being (i) structure based: the metal
microchannel wall plays an essential role in controlling
the wave speed. (ii) Near-field: the slow-wave mode is
effectively a surface wave governed largely by the dielec-
tric properties of the boundary material. (iii) Vacuum
acceleration: there is no plasma or gaseous medium in
the path of the particle beam. (iv) Traveling wave: the
wave that accelerates the particles is launched from one
end of the channel and travels with the particle beam. (v)
Direct excitation: the wave is launched directly by a laser
focused into one end of the channel. No nonlinear mecha-
nism is invoked to convert laser light into another wave
with suitable properties.

Microchannel acceleration has several advantages: (i)
competitive gradient. The acceleration gradient is in the
attractive range of > 1 GV=m for state-of-the-art CO2

lasers, as will be shown in Sec. III B. (ii) Simple physics:
the linear propagation of a simple wave produces
the acceleration without recourse to nonlinear wave-
conversion phenomena. This avoids controllability issues
that often accompany nonlinear processes. (iii) Simple
geometry: a smooth metal microchannel is the simplest
of all slow-wave structures. A by-product of this may be
less sensitivity to wall damage. (iv) Simple drive: the
wave is launched by direct injection of laser light into
the guide. There is no resonance condition requiring a
short laser pulse. (v) Laser channeling: the metal guide
automatically channels the laser beam, which can be over
many Rayleigh ranges. (vi) Dephasing: for proper chan-
nel size there is perfect synchronism, i.e., no dephasing of
accelerated particles. Thus the interaction length is lim-
ited only by wave damping. (vii) Electron-beam (e beam)
061302-6
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quality. In the synchronous channel, the accelerating field
is ‘‘flat’’ in the transverse direction, which helps preserve
a monoenergetic e beam.

The metal microchannel accelerator is related in some
ways to concepts proposed earlier. The plasma fiber ac-
celerator [5–7] employs a very narrow channel; however,
the channel structure is composed entirely of plasma. The
plasma at the channel edge is overdense. A variation of
this assumes a rippled plasma structure so that it will
support a slow wave. Another variation of this uses
the beats between two waveguide modes that differ by
the plasma frequency, giving the beat wave a phase
velocity of c.

Another related concept is the hollow plasma channel
[3] where the channel wall is a plasma instead of a metal.
In this concept the laser beam, which is confined by the
plasma channel, excites a plasma wave in the boundary
plasma by forward-Raman scattering. As such this is a
LWFA concept. The plasma wave is, in fact, the slow-
wave mode discussed here in Sec. II. It differs from the
metal microchannel in that the channel is formed by a
plasma instead of a metal. It also differs in that a non-
linear coupling mechanism is required to convert laser
energy into the plasma wave.

A third concept is the dielectric-loaded waveguide [8].
Here the solid waveguide wall is lined with a high-"
dielectric material that slows down the phase velocity of
a waveguide mode to the speed of light. While the ex-
amples in Ref. [8] employ macroscopic size waveguides, a
microchannel version of this has also been proposed [9].
In the example presented in Ref. [9] the channel radius is
R� 250 �m and the index of refraction of the dielectric
boundary material is n2 � �"2	

1=2 � 1:5, i.e., n2 > 1.
TABLE IV. Predicted gradient for ATF parameters.

Long laser Short laser
Parameter pulse pulse

Laser pulse energy, WL 5 J 5 J
Laser pulse length, -L 180 psec 2 psec
Acceleration gradient, G 140 MV=m 1:3 GV=m
B. Microchannel acceleration performance

The laser-energized metal microchannel seems ideally
suited for CO2 lasers, which are capable of terawatt peak
power levels [10]. The 10:6 �m laser wavelength fits into
a fortuitous range of frequencies suited for acceleration. If
the wavelength is too short then the synchronous channel
size is too small to contain a realistic-sized particle beam
over a reasonable distance. As an example, for the chan-
nel diameter to exceed 100 �m, the laser wavelength
must be > 4 �m [see Eq. (10)]. Moreover, if the wave-
length is too long, then the channel size becomes so large
that the laser intensities on axis are much reduced. For
example, if the channel diameter must be smaller than
1 cm, then � < 120 �m is required.

The acceleration gradient of the microchannel accel-
erator can be derived by relating the accelerating field on
the channel axis, G � Ez�r � 0	, to realistic parameters.
From Eq. (3) the radial field at the wall is jErW j �
GkI1�a1b	=�1. With k � 2�=� and synchronism (�1b �
0) assumed, this gives jErWj � ��b=�	G.We can identify
ErW with the laser field EL. Thus, the acceleration gra-
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dient for the synchronous case (� � 0) is

G � �1=�	EL�=b: (19)

In terms of the normalized laser field a0 � eEL=!mec,
this can be rewritten G � 2�mec

2=e	a0=b. The power-
field relationship for a synchronous slow wave (Er /
r; Ez � const) is

PL � ��=4	"0cE
2
rW�b

2 � 2�2=�2	: (20)

Combining these and recognizing that b� �=� gives
the acceleration gradient

G � 2�

�����������
PL
�"0c

s
�2p2
�3

 fG: (21)

Here the factor fG��	 is a correction factor for the non-
synchronous case as explained in Appendix B. In the
synchronous case fG�0	 � 1.

We next apply this prediction using the parameters of
the CO2 laser at the Brookhaven National Laboratory
Accelerator Test Facility (ATF) [10]. The ATF laser
can operate in a long-pulse (180 ps) and a short-pulse
(< 10 ps) mode. These laser capabilities are listed in
Table IV. The acceleration gradient is for the case of a
cylindrical copper guide (b� 300 �m) and assuming a
laser peak power PL � WL=-L. The predicted gradient,
even for the long-pulse laser, is adequate for a proof-of-
principle demonstration of the microchannel accelerator
concept. The short-pulse laser gradient is in the interesting
GV=m range.

A cylindrical waveguide requires a radially polarized
laser beam to excite the TM slow-wave mode. Radially
polarized laser beams have been used at the ATF for
inverse Cerenkov acceleration experiments [11]. An im-
proved optical design [12] for creating a radially polar-
ized beam has also been developed, which can be scaled
to handle terawatt laser levels. Note, a slab waveguide can
be driven using a TEM01 mode where the polarization of
one lobe of this beam is 180� out of phase with the other
lobe. Such a TEM01 mode is already created as an inter-
mediate step in the schemes [11,12] used to generate a
radially polarized beam. Hence, a subsystem of the radi-
ally polarization conversion systems can be used to drive
a slab waveguide.

The example in Table IVassumes the synchronous case
for which the channel radius is 297 �m, the dephasing
distance is infinite, the wave damping length is 11.8 cm,
061302-7
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and the gradient is 1:3 GV=m. However, the synchronous
case is not necessarily the optimum. For example, higher
gradients can be achieved for the nonsynchronous case
� > 0. Consider two examples: (i) If � � 0:7, then the
channel radius decreases to b � 270 �m, the dephasing
distance is Lph � 36 cm, the damping length is 1=kI �
10 cm, and the acceleration gradient increases to G �
1:6 GV=m. (ii) If � � 1:5, then the channel radius re-
duces to b � 237 �m, the dephasing distance is Lph �
11 cm, the damping length is 1=kI � 8 cm, and the ac-
celeration gradient increases to G � 2:3 GV=m. (See
Appendix B for further discussion of these examples.)

It is useful to compare the gradient predicted for the
metal microchannel with that for ‘‘resonant’’ LWFA [13].
Consider two LWFA examples: long wavelength, � �
10:6 �m, and short wavelength, � � 0:8 �m. The den-
sity is chosen in order to achieve an acceleration distance
of 10 cm, i.e., by setting the dephasing distance Lph �
�3p=�2 � 10 cm. LWFA resonance is assumed, i.e., -L �
�p=2c. The laser radius is set by the requirement of quasi-
one-dimensionality of the wakefields, i.e., rL > �p.

Assume the laser pulse driving both the metal
microchannel and the LWFA is WL � 5 J. The laser field
parameter for a Gaussian pulse is a0 � 4:817�
10�6

��������������
PL�W	

p
�=rL. From Ref. [13] the gradient using

a0 � eEL=!mec is

hGi � 2
mec

2

e
a20

�p
�������������������
1� a20=2

q : (22)

This is an average gradient assuming that the particle
slips by � in phase, which is a factor of 2=� times the
peak gradient.

Table V compares the microchannel accelerator with
these two LWFA examples. The microchannel example
has a gradient in the GV=m range, but it is slightly lower
than the LWFA examples. Weighed against this moderate
disadvantage are the following advantages of the micro-
channel case: the laser pulse length is unrestricted; no
plasma needs to be prepared; laser channeling is auto-
matic; and the accelerating field is flat. In addition, as
mentioned previously, higher gradients in the microchan-
nel can be achieved by operating with slightly smaller
channels, corresponding to higher fields on axis, e.g.,
2:3 GV=m for a 474 �m channel diameter. Alternately,
if the laser pulse length in the microchannel example
TABLE V. Comparison o

Parameter Microchannel LW

Density n (cm�3) 0
Radius b or rL (�m) 300
Laser pulse length, -L 2 ps
Laser parameter, a0 0.38
Gradient, hGi (GV=m) 1.3
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were reduced to that in the long-wavelength LWFA ex-
ample, then G would rise to 3:0 GV=m.

IV. OTHER ISSUES RELATED TO METAL
MICROCHANNEL ACCELERATION

The metal microchannel is a promising acceleration
concept. Nonetheless, several issues need to be investi-
gated. Some have been addressed already. For example,
the wave damping is not excessive with damping lengths
exceeding 10 cm. Moreover, precision in the microchan-
nel dimensions is not required to achieve adequate syn-
chronism (modest dephasing). The channel size may
differ from the ideal value by several tens of percent.
Other issues, which are surveyed briefly here, are subjects
for future study.

If the microchannel is too small then the issue of the
particle-beam acceptance emerges. This amounts to the
question whether a finite-emittance beam will fit cleanly
into the channel opening. For conventional beam optics,
the radius of a circular beam is a �

����������������������
a20 � �

2
1z2

q
, where

a0 is the waist radius, �1 is the asymptotic focusing angle,
and z is the distance from the waist. In terms of these
parameters, the normalized emittance is "N � ��1b0.
Suppose the beam is required to be focused in a ‘‘gentle’’
manner so that at the ends of the waveguide (z � L=2) we
have a � amax �

���
2

p
a0. Combining these gives amax �

�"NL=�	1=2. Then for typical beam parameters at the
ATF [14] of "N � 2� 10�6 m rad, �� 100, and a section
length L � 10 cm, this gives amax � 45 �m. This beam
radius poses no difficulty in a channel with radius b �
300 �m.

Wall damage sets an upper limit to the intensity or
electric field at the waveguide wall. Using Eq. (19) and
supposing that Er � Ez at the boundary r � b, the in-
tensity there is

Iwall � 2��PL�
2
p2=�

4	fI; (23)

where the factor fI��	 given in Appendix B is the
nonsynchronous correction. [Recall in the synchronous
case fI�0	 � 1.] For the synchronous example (Table IV),
the wall intensity is IW � 1:7� 1015 W=cm2. For the
two nonsynchronous examples mentioned earlier this in-
creases slightly: for� � 0:7, Iwall � 1:98� 1015 W=cm2,
and for � � 1:5, Iwall � 2:37� 1015 W=cm2. These lev-
els are comparable to typical optical field ionization
f acceleration gradients.

FA@� � 10:6 �m LWFA@� � 0:8 �m

2:2� 1016 6:97� 1017

224 40
373 fs 67 fs
0.83 0.83
2.7 15
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thresholds. There is also a limit associated with the wall
heating resulting from absorption of wave energy. The
wall heat load is WLkI=�b, which for the synchronous
example in Table IV is 5:3 J=cm2. This is comparable to
the damage thresholds for metal mirrors.

It may be possible, however, to exceed conventional
damage limits because of the simplicity of the structure: a
simple smooth cylindrical wall. Copper blown off the
wall simply recondenses back to the wall after the laser
wave passes. Thus, there are no geometrical surface
changes such as might be suffered by more complex
slow-wave structures involving disks, irises, or even a
wavy wall. However, there is still the possibility that
surface roughness caused by laser damage can scatter
radiation into other waveguide modes. Damage may
erode the channel ends because some metal can escape
out the ends. Experiments with high-voltage discharges
in smooth polyethylene microchannels as small as
300 �m diameter showed that ablation was minor and
the shape of the capillary remained almost the same after
1000 shots [15]. If wall damage is mitigated in this way, it
may be less of a limiting factor.

In the event that some plasma is blown off the metal
wall during the passage of the wave, the slow-wave phase
velocity may be modified. However, it need only remain
stable during the passage of the e-beam bunch, which
typically would last on the order of 1 psec. This time is
very short such that even if a plasma layer appears at the
wall, it should be extremely thin. For example, for a
blowoff speed equal to that of a singly ionized copper
atom at 10 eV, the plasma layer after 1 psec would be about
4 nm in thickness, or about 10�5 of the guide diameter.
Even so the effect of a plasma layer on propagation should
be investigated.

The density ‘‘profile’’ passes through the critical den-
sity at the surface of a metal. Resonant absorption mecha-
nisms normally appear at the critical density, which cause
wave damping and other effects, as pointed out in Ref. [3].
This might also degrade the laser beam as seen in sim-
ulations of laser acceleration schemes involving over-
dense plasmas [16]. However since the density jumps
sharply through the resonance point at the surface of a
metal this effect might be mitigated.

Nonuniformities in the wall will cause radiation into
parasitic modes and thus an effective wave damping.
However, enhanced ablation at ‘‘high spots’’ may help
smooth out such nonuniformities. The effect of surface
roughness on attenuation has been investigated elsewhere
(see Ref. [17] and references therein).

Focusing a laser with � � 10:6 �m into a channel
opening 600 �m in diameter poses no problem.
However, as mentioned earlier, efficient coupling of the
laser beam into the slow-wave TM cylindrical mode
requires a radially polarized laser beam. While there
are different means for creating the appropriate polarized
laser beam, an issue that still needs to be studied is
061302-9
developing efficient techniques for coupling the laser
beam into the desired mode at the entrance to the
waveguide.

V. CONCLUSION
Microchannel acceleration offers the potential for laser

acceleration in free space, which avoids the usage of a
phase-matching medium or plasmas, it does not require
ultrashort laser pulse lengths, does not invoke nonlinear
mechanisms, does not require spatial termination of the
laser beam, and it is based upon a relatively simple
waveguide structure. It takes advantage of the negative
index of refraction of metals at infrared wavelengths,
thereby making CO2 lasers ideal candidates for driving
the device. At comparable peak powers as other laser
acceleration schemes, microchannel acceleration yields
gradients of over 1 GeV=m.

While the microchannel accelerator geometry ana-
lyzed in this paper is primarily for an axisymmetric
cylinder, a proof-of-principle microchannel acceleration
experiment could be performed by using two opposing
mirrors with a small gap between them in a slab channel
geometry (see Appendix A). The e beam and laser beam
would be sent through the gap. This illustrates the design
flexibility of this scheme.

Further analysis of design issues related to the practical
implementation of this technique is still needed.
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APPENDIX A: APPLICATION TO SLAB
CHANNELS

The foregoing analyses assumed a cylindrical guide.
For a slab channel the equations are slightly different. In
Maxwell’s equation for the longitudinal field in a slab
guide or a surface wave [analogous to Eq. (1)], the differ-
ential operator is replaced by d2=dx2. In Eq. (3a), for a
slab guide the I0 and I1 Bessel functions are replaced by
cosh and sinh. In Eq. (3b), the K0 andK1 Bessel functions
are replaced by exp��1x	 and exp��a1x	. For imaginary
�1, the hyperbolic functions convert as follows:
cosh��1x	 ! cos�ja1jx	 and �i sinh��1x	 ! sin�j�1jx	.
The slab-guide analogy to Eq. (4) is

"1
tanh��1b	
�1b

� �
"2
�2b

: (A1)

For imaginary �1, the quotient on the LHS of this equa-
tion becomes tan�j�1jb	=j�1jb. The slab-guide analogy to
Eq. (7) is the same except the factor K1�  	=K0�  	 is
absent, and the F function for a slab is defined differently:

Fslab��	 �
�

tan�
����
�

p
	=

����
�

p
; � � 0;

tanh�
���������
��

p
	=

���������
��

p
; �< 0

�
: (A2)

The small-argument expansion of this is Fslab �
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1��=3. The factor of 1=2 on the RHS of Eqs. (9) and
(12) is removed. Note, the synchronous slab-guide size b
is half that for the cylinder in Eqs. (10) and (17).
Equation (15) has an additional factor of 3=2 on the
RHS and an additional factor of 3=2 multiplying the
last term within the parentheses. Equations (16) and
(18) have an additional factor of 2=3 on the RHS.

One convenient aspect of the slab-guide geometry is
that it can be implemented by using a pair of flat metal
mirrors facing each other with a gap of separation b. This
will be significantly easier to fabricate and assemble than
a cylindrical waveguide. Indeed, this gap can also be
easily tapered to maintain phase matching should the
electrons gain enough energy along the microchannel
that they begin to move faster than the slow wave.

APPENDIX B. CORRECTIONS FOR
NONSYNCHRONOUS CONDITION

In Sec. II we assumed j�j � 1, i.e., near-synchronous
conditions, which allowed us to simplify the analysis by
using a linear expansion of F � �1=2	�1��=8	 for the
function in Eq. (8). However, in realistic applications the
optimum may occur for a value of� that is not small, i.e.,
intentionally not fully synchronous. Under these condi-
tions usage of a more exact expression for F may be
required, for example, a quadratic expansion. To illustrate
how the value of F is affected by the approximation being
made, if the exact value of � is 0.7 [i.e., based on the
exact expression for F��	], then the linear approximation
value is � � 0:79, which is 13% too high. If the exact
value of� is 1.5, then the linear approximation gives� �
2:06, or 34% too high. A quadratic expansion F �
�1=2	�1��=8��2=48	 is much more accurate in these
two examples giving values of 1.3% and 5.8% too high,
respectively.

The channel size for the nonsynchronous case� � 0 is
b � bsynf1=2F��	. Expressions for the damping length,
Eq. (16), and the dephasing length, Eq. (18), are un-
changed since these are expressed in terms of the ratio
b=bsyn0.

The electric field profiles in the channel are given by
Eq. (3a). In the synchronous case, �1 ! 0, so that the
accelerating field Ez is flat in radius and Er / r. However,
in the nonsynchronous case, � � 0, �1 � 0, so that Ez
falls off toward the channel edge, and Er falls faster than
linear in r. This modifies the acceleration field-power
relationship by introducing the factor fG in Eq. (21):

fG � 4F2��	
�
16

�2

Z ���
�

p

0
uduJ21�u	

�
�1=2

: (B1)

Finally, the wall intensity-power relationship, Eq. (23),
is modified by the factor

fI �
16

�

J1�

����
�

p
	F��	�2

�
16

�2

Z ���
�

p

0
uduJ21�u	

�
�1
: (B2)
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