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A one-dimensional, quasistatic model of a capillary discharge plasma has been developed. Such a
plasma is useful as a medium to generate plasma waves for acceleration of electrons via processes such as
laser wakefield acceleration or plasma wakefield acceleration. Another important characteristic of the
plasma is its intrinsic parabolic density distribution near the center of the capillary, which can channel a
laser beam along the capillary. The model is intended to be a design tool to aid in the selection of the
capillary parameters in order to obtain desired plasma characteristics, e.g., plasma density and matched
laser beam radius for guiding. An optional external axial magnetic field can be included, which improves
the laser-channeling effect in some cases. The model also enables a measure of the potential for laser
damage of the capillary wall. Results are presented for the design of a gas-filled capillary that will be
tested during the staged electron laser acceleration–laser wakefield (STELLA-LW) experiment.
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I. INTRODUCTION

Plasma-based, laser-driven acceleration of electrons re-
quires a suitable plasma medium for creation of the plasma
wave (i.e., wakefield) that accelerates the electrons. For
example, in plasma wakefield acceleration (PWFA) [1], an
ultrashort electron beam (e-beam) pulse passes through the
plasma generating plasma waves in its wake. In laser
wakefield acceleration (LWFA) [2], an ultrashort laser
pulse travels through the plasma and produces the wake-
fields. These wakefields have demonstrated acceleration
gradients >100 GV=m [3].

Different methods have been utilized to produce the
plasma medium; however, a particularly promising tech-
nique is to use a capillary discharge. Figure 1 illustrates the
basic geometry of a capillary discharge for PWFA or
LWFA applications. It consists of a tube or channel with an
inside radius R0, typically of order 1 mm or less. Elec-
trodes are positioned at the ends of the channel so that a
high-voltage pulse can be applied across the channel to
generate the plasma. This means the channel must be a
dielectric material, such as ceramic or plastic, to electri-
cally insulate the two electrodes. Variations of this basic
geometry include using a short (e.g., �3 mm) capillary
section in tandem with a longer capillary (e.g., >1 cm)
whereby the short capillary acts as a trigger for the longer
capillary [4]. This reduces the voltage level needed for
initial breakdown.

The source of the atoms or molecules for the plasma can
be either material ablated from the channel wall or gas that
has been injected into the channel prior to the discharge.
Examples of the former are polypropylene capillaries op-
erated in vacuum [4]. The electric discharge ablates and
ionizes material from the polypropylene wall (primarily

hydrogen and carbon atoms). Examples of the latter are
hydrogen-gas-filled capillaries featuring ceramic or sap-
phire channels [5]. Near 100% ionization of the hydrogen
gas occurs when the high voltage is applied.

A quasi-steady-state thermal balance is achieved be-
tween the continuous Ohmic heating by the discharge
current and thermal conduction loss to the capillary wall.
This produces a peaked temperature profile on the axis of
the channel. Since the pressure is approximately uniform
across the plasma, the density profile has a minimum on
axis. This quasiparabolic density profile is suitable for laser
channeling.

Once a plasma is formed in the channel, an e-beam or
laser pulse can be focused into the plasma to generate
wakefields, as illustrated in Fig. 1. If the pulse duration
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FIG. 1. (Color) Side-view schematic of typical capillary dis-
charge for either LWFA or PWFA applications.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 9, 081301 (2006)

1098-4402=06=9(8)=081301(10) 081301-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.9.081301


of the e-beam or laser pulse is short enough, then wake-
fields can be effectively produced via a resonant interaction
between the primary Fourier component of the pulse and
the plasma frequency. This is referred to as resonant LWFA
or resonant PWFA. Since the plasma frequency is depen-
dent on the electron density (or, equivalently, plasma den-
sity), this implies the electron density needed in the
channel depends on the pulse length of the e-beam or laser
beam. For example, in LWFA the resonance condition
relates the electron density ne and the laser pulse length
tL as follows:

 ne�cm�3� �
3:1� 10�9

t2L�sec�
: (1)

Thus, if tL � 0:5 ps, then the required electron density for
resonant excitation of the plasma wave is ne � 1016 cm�3.

There is another common operating regime called self-
modulated LWFA (SM-LWFA) [6–8], which is a more
complex process relying on nonlinear effects occurring
between the laser pulse and the plasma. There are also
hybrid approaches, such as pseudoresonant LWFA [9],
where tL is longer than dictated by Eq. (1), but laser pulse
steepening effects occurring within the plasma effectively
create Fourier components of a shorter laser pulse so that
Eq. (1) is approximately satisfied. Another hybrid is seeded
SM-LWFA [10] where a seed e-beam pulse creates wake-
fields via resonant PWFA and the laser pulse immediately
follows to amplify the wakefields via SM-LWFA.

All these approaches require specific plasma densities.
Hence, often the electron density is predetermined before
the capillary parameters are chosen. Furthermore, a mini-
mum laser intensity or charge density is usually needed to
drive the wakefield generation process.

For LWFA, maintaining a certain minimum laser inten-
sity impacts the capillary design because of the aforemen-
tioned laser-channeling effect produced by the density
hollow in the center of the channel [11,12]. This makes it
possible to maintain the laser intensity over distances
much longer than a Rayleigh range. This intrinsic guiding
of laser beams is one of the advantages of capillary
discharges.

The matching waist size WM of the laser beam that will
be guided down the capillary assuming a parabolic density
profile is given by [5]

 WM �

�
R2

0

�re�ne

�
1=4
; (2)

where �ne is the depth of the parabolic profile (difference
between the density at r � R0 and the axis r � 0) and re �
2:82� 10�13 cm is the classical electron radius. Hence,
the matching waist size is a function of the ratio of the
channel radius and the depth of the density hollow. The
depth �ne depends on the thermal conductivity of the
plasma. In addition, the amount of energy deposited in
the plasma, which affects its formation, is a function of

the electrical current passing through the capillary dis-
charge. The voltage across the capillary and the impedance
of the discharge are complicated functions of the plasma
characteristics.

Thus, many interdependent factors are involved when
selecting the parameter values for a capillary design that
will achieve target values for ne and WM. Hence, the
motivation for the work discussed in this paper was to
develop a capillary discharge model that incorporates all
the plasma physics and is specifically made to aid in the
design of the capillary. This model supports the staged
electron laser acceleration–laser wakefield (STELLA-
LW) experiment being performed at the Brookhaven
National Laboratory Accelerator Test Facility (BNL-
ATF) [13]. This experiment will be testing the pseudore-
sonant LWFA [9] and seeded SM-LWFA [10] schemes. For
the conditions at the ATF, these methods require relatively
low plasma densities (� 1016–1017 cm�3). Preparations
for the STELLA-LW experiment have confirmed that a
gas-filled capillary is able to achieve stable densities
down to <1016 cm�3. Although STELLA-LW is able to
use either polypropylene or gas-filled capillaries, the
model presented in this paper applies only to hydrogen-
filled capillaries.

Bobrova et al. [14] developed a comprehensive, one-
dimensional (1D), time-dependent magnetohydrodynamic
code for a gas-filled capillary, which agrees well with
experimental data [5]. However, a model to assist in the
design of a gas-filled capillary need not be time-dependent.
The Bobrova computations indicated that a quasi-steady-
state is reached fairly quickly (e.g., � 50–80 ns). This
quasi-steady-state lasts as long as the discharge is main-
tained (e.g. �1 �s). Thus, over the short time scale of the
LWFA interaction (2–20 ps), the capillary plasma condi-
tions are essentially constant. The quasistatic assumption
greatly simplifies the model, reducing it to a coupled set of
ordinary differential equations requiring a simple iteration
procedure. This permits the model to run efficiently and
quickly on a standard-size PC.

The next section describes our 1D, quasistatic capillary
discharge model with details of the equations used in the
model listed in Appendix A. Section III presents numerical
computations for the various design relationships including
voltage-current, temperature-current, and density profile.
Model predictions for the STELLA-LW experiment are
also presented along with a discussion of potential issues
with laser damage of the capillary wall. Conclusions are
given in Sec. IV.

II. DESCRIPTION OF 1D, QUASISTATIC
CAPILLARY DISCHARGE MODEL

A. Assumptions and model description

The development of our model focused on addressing
the design needs of the STELLA-LW experiment, i.e., to
develop the design relationships that best achieve the de-
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sired properties for laser channeling and the LWFA inter-
action. These primarily are the target plasma density n0 (on
axis) and the matched laser spot size WM for laser guiding.
The design task is to link these target parameters to the
various externally controllable parameters. The controls
are (a) capillary wall radius R0, (b) discharge current I,
(c) hydrogen atomic filling density nf, and (d) an optional
applied longitudinal (solenoid) magnetic field, Bz. Note
that nf as a control parameter is generally unavailable in
polyethylene capillaries where the density is not indepen-
dently controllable.

The applied external B-field is a new control concept we
have introduced. Adding a B-field (in the direction of the
discharge current) reduces the thermal conductivity of the
plasma and can steepen both the temperature and density
profiles. However, an external B-field is currently not
being implemented on the STELLA-LW experiment.

Our model relies on the following assumptions:
(1) Large aspect ratio between capillary length and

radius.—All plasma and field variables depend
only on the radial r coordinate (cylindrical coordi-
nates r, �, z are adopted). This 1D approximation is
valid when the capillary length L is much larger than
its radius R0, so that end effects can be ignored.

(2) Quasi-steady-state.—Quasi-steady-state, i.e.,
@=@t � 0 is assumed. While some radial motion
occurs at the initiation of the discharge, this quickly
ends as the plasma establishes a balance of radial
forces. After the �50 ns transient period [14–16],
the field and plasma variables become quasistatic,
varying slowly in response to changes in the applied
electrical current.

(3) Static ions.—Radial force-balance rules out radial
ion motion. The static state of the ions means they
also have negligible axial and azimuthal motions.
This is reasonable since the low ion magnetization
for typical capillaries guarantees large ion viscosity,
implying that any ion flow will be negligible. Thus,
the current density j arises entirely from azimuthal
and axial electron flows, i.e., j � �eneu, where e is
the electron charge and u is the electron flow
velocity.

(4) Quasineutrality.—The ion and electron densities
are assumed identical, ne � ni � n. This is valid
except in a very thin Debye sheath at the capillary
wall. Typical Debye lengths are <1 �m, whereas
capillaries of interest have typical radii of hundreds
of microns.

(5) Pure hydrogen as gaseous medium.—The charge of
the ions is Z � 1 and their atomic mass is A � 1.

(6) Single plasma temperature.—The ions and elec-
trons have identical temperatures, Te � Ti � T.
This approximation is valid since the thermal equili-
bration time is less than 50 ns for conditions of
interest.

(7) Negligible parasitic losses.—Radiative power loss
is neglected, which is appropriate given the tiny
plasma volume. Furthermore, charge-exchange
losses are neglected since the plasma density is
orders of magnitude higher than the expected neu-
tral density.

(8) Braginskii transport is valid.—The classical
Braginskii transport rates are adopted [17].
Thermal conduction by both ion and electron spe-
cies is included, accounting for the magnetizations
of each species. Also included are thermoelectric
effects, i.e., Nernst effect (a transverse temperature
gradient dT=dr giving rise to a friction force against
the longitudinal electron current) and Ettinghausen
effect (the current flowing across the azimuthal field
giving rise to a radial thermal transport).

An added feature in our model, which is not included in
the Bobrova model, is the optional externally imposed
solenoid magnetic field Bz. This permits additional control
of the discharge properties to complement the azimuthal
field B� generated by the plasma current. The additional
magnetic field reduces the thermal conductivity and
steepens the temperature gradient, which tends to deepen
the density hollow �ne in Eq. (2). Hence, for fixed R0, the
external field may allow a smaller matched laser beam
waist to be guided. As explained later, this can also reduce
the chance of laser beam damage to the channel walls.

Consistent with the foregoing assumptions, the magnetic
field and the current density have only axial and azimuthal
components: B � B��̂ � Bzẑ and j � j��̂ � jzẑ. In the
following, MKS-eV units are used. The steady-state
Faraday’s law is r�E � 0. Its two relevant components
are Ez � const, and E� � 0. The steady-state Ampere’s
law r�B � �0j also has two relevant components:

 �1=r�d�rB��=dr � �0jz; (3)

 dBz=dr � ��0j�; (4)

where �0 is the permittivity of free space. For a static ion
fluid, the equation of motion becomes a force-balance
relation rp � �1=c�j�B, with one nontrivial compo-
nent:

 d�nkT�=dr � j�Bz � jzB�; (5)

where p � 2nkT is the pressure accounting for both elec-
trons and ions with Z � 1, n is the density of electrons, and
k is Boltzmann’s constant. The right side of Eq. (5) con-
tains the pinch effect, which can be important in some
cases.

The electron equation of motion gives rise to Ohm’s law
0 � �rpe � �enE� j�B�R, which assumes mass-
less electrons and neglects the electron viscosity. Here R is
the friction force of the electron density against the sta-
tionary background ions. The azimuthal and axial compo-
nents are of interest: R� � 0; and Rz=en � Ez � const.
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For the friction force, the Braginskii transport model is
adopted [17]. In the capillary geometry this leads to
 

��0
k
b2
� � �

0
?b

2
z��0j� � ��

0
k
� �0?�b�bz�0jz

�
�
4
�0uT� Bz

1

T
dT
dr
� 0; (6)

 

��0
k
� �0?�b�bz�0j� � ��

0
k
b2
z � �

0
?b

2
���0jz

�
�
4
�0uT� B�

1

T
dT
dr
�
�0Ez
�?0

; (7)

where b 	 B=B is the unit normal in the direction of the
magnetic field. The various coefficients �0

k
, �0?, �0uT� , and

�?0 are defined in Appendix A. Here �?0 is the fully
magnetized resistivity, and � 	 4�0nkT=B2 is the local
ratio of plasma to magnetic pressures. The energy conser-
vation law is 0 � �r 
 q� R 
 u, where q is the thermal
heat flux by both ions and electrons. Using Ohm’s law we
find

 �1=r�d�rqr�=dr � �Ezjz; (8)

where the radial heat flux is

 qr �
�?0

�0

�
4

�
�0uT� �Bzj� � B�jz� � ��

0
e � �0i�

B2

�0

1

T
dT
dr

�
:

(9)

The coefficients �0i and �0e are given in Appendix A. The
foregoing constitute a complete system of ordinary differ-
ential equations for the variables as a function of r.

B. Model parameters

From the capillary designer’s viewpoint, the controllable
design parameters are R0, L, nf, I (to the extent allowed by
the high-voltage circuit), and Bz. The length of the capil-
lary is set by other considerations, such as the dephasing
length of the plasma waves, and is not considered in this
model except for the assumption that it be much longer
than R0.

The hydrogen gas-fill pressure is proportional to the
prefill density of atomic hydrogen in the capillary, which
is identical to the subsequent average density

 hni � �2=R2
0�
Z R0

0
nrdr: (10)

In principle, the discharge current passing through the
capillary is set by both external circuit parameters and the
impedance of the discharge. In practice, controlling the
discharge current by varying the external circuit parame-
ters is not always straightforward. The current is given by

 I � �2�=�0�R0B��R0�: (11)

For the optional external B-field we shall assume a value
of 1 T, which is representative of the upper limit obtainable

from room-temperature magnets in this type of application.
As an upper limit, it serves to illustrate the maximum
effect the external field would have on the capillary
characteristics.

The radius of the capillary compared to the radius of the
matched laser beam can be expressed as a ratio R0=WM.
This ratio can serve as an index related to the potential for
laser damage to the capillary wall. Even if Wm < R0, the
outer edges of the laser beam can still strike the capillary
wall. A simple rule of thumb is to have R0=WM exceed 2 or
3 so that the laser field at the wall is much less than at the
axis. If R0=WM < 2, then the possibility of laser damage of
the wall is considerably increased.

C. Model algorithm method

The mathematical description of the capillary consists of
five coupled ordinary differential equations in r on the
domain [0, R0] for the variables B�, Bz, n, T, and qr, i.e.,
Eqs. (3)–(5), (8), and (9). The other equations serve as
auxiliary ones. The system contains one explicit input
parameter, Ez. All other inputs are associated with the
boundary conditions of the system. Some of the boundary
conditions are applied at the axis (r � 0) and some at the
capillary wall (r � R0). The axis conditions are B��0� � 0,
n�0� � n0, and qr�0� � 0, where n0 is the target on-axis
density. The wall conditions are Bz�R0� � Bzw (externally
applied field) and T�R0� � Tw (wall temperature). The
condition Tw � 0 has generally been assumed [14–16].
In our modeling, Tw � 1 eV is assumed in order to account
roughly for the presence of an electrostatic sheath at
the wall. However, the results are insensitive to this
assumption.

The foregoing system can be solved by a shooting
method. Treating it as an initial value problem, the values
Bz�0� and T�0� are guessed and the equations integrated by
a 4th-order Runge-Kutta algorithm. Then the guessed val-
ues are adjusted using the Newton-Raphson method, and
the integration repeated until the desired wall conditions
Bz�R0� � Bzw, and T�R0� � Tw are achieved. The compu-
tational procedure is coded in Visual Basic imbedded in
EXCEL software.

III. COMPARISON WITH BOBROVA MODEL AND
SAMPLE MODEL RESULTS

A. Comparison of quasistatic model with Bobrova
simulation

The accuracy of our quasistatic model was verified by
comparing its predictions with the fully time-dependent
simulation of Bobrova et al. [14]. As listed in Table I, the
on-axis plasma temperature and plasma density n0 were
chosen to match the Bobrova calculation. The predictions
of the two models are compared in Fig. 2, where the
Bobrova result (solid black curve) is taken from Fig. 3 of
Ref. [14] and represents the computed density profile at
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t � 80 ns corresponding to an approximate steady-state
condition. Also shown is the density profile predicted by
the quasistatic model (dashed red curve). There is excellent
agreement between the two models except very close to the
capillary wall. The differences there arise because the
Bobrova model took into account neutral hydrogen that
appears in the cold layers near the wall. This agreement
between the quasistatic model and the fully time-
dependent computation was achieved without any para-
metric adjustments.

The shape of the plasma density profile in the central
portion of the capillary is critical since this determines the
guiding of the laser beam. As seen in Fig. 2, both models
agree in this region. Note that both models predict a super-
parabolic density rise outside the core (r > 75 �m).

The discharge currents predicted by the models can also
be compared. Bobrova et al. used a current pulse given by
I�t� � I0 sin��t=t0�, where I0 � 250 A and t0 � 200 ns.
At t � 80 ns, this equation yields I � 211 A, which is in
close agreement with the quasistatic model value of I �
216 A.

In the quasistatic model results that follow, one further
comparison is made. In addition to the fully time-

dependent analysis, Bobrova et al. [14] devised a simple
analytic model of the capillary. Their analytic model has
the advantage of giving simple algebraic relationships
between key parameters; however, in doing so it makes
certain assumptions and excludes parts of the physics.
Details of the analytic model, including a minor modifica-
tion made for this paper, are summarized in Appendix B.
Comparing the analytic model results with the quasistatic
model helps reveal where the simplifications of the analytic
model impact its accuracy.

B. Capillary discharge properties predicted by
quasistatic model

For the conditions at the ATF, the seeded SM-LWFA
experiment and pseudoresonant LWFA experiments re-
quire nominal plasma densities of 8:9� 1016 cm�3 and
1:1� 1016 cm�3, respectively. For the purposes of explor-
ing the capillary discharge behavior using our quasistatic
model, we shall assume an intermediate reference density
of n0 � 4� 1016 cm�3, and a reference capillary radius of
R0 � 250 �m.

As an element in an electrical circuit, the capillary acts
as a nonlinear resistor. The electrical resistance of the
capillary discharge is

 R � EzL=I: (12)

Figure 3 shows the electric field Ez��RI=L� versus the
current I. The nonlinearity of the capillary resistivity is
quite evident as it deviates from the straight dot-dashed
lines shown on the plot that represent linear resistance.
Also shown is the analytic model result, which predicts
Ez / I2=5 [see Eq. (B2)]. This unusual scaling arises be-
cause the resistance decreases with temperature, � /
T�3=2, and T increases with current. The presence of a

FIG. 2. (Color) Comparison of model predictions for plasma
density versus radius. Plotted is the result given in Fig. 3 of
Ref. [14] at 80 ns (solid curve) and the quasistatic model
prediction (red long-dashed curve). A parabolic fit to the inner
portion (r < 75 �m) is also shown (blue short-dashed curve).

FIG. 3. (Color) Quasistatic model predictions for electric field
gradient versus the capillary discharge current with R0 �
250 �m and n0 � 4� 1016 cm�3. Bz is the external solenoid
field.

TABLE I. Input parameters used in quasistatic model for com-
parison with Bobrova model [14].

Input parameter Value

Capillary inner radius, R0 150 �m
On-axis plasma temperature, T�0� 6.19 eV
Plasma temperature at capillary wall, T�R0� 1 eV
On-axis plasma density, n0�0� 2:26� 1018 cm�3
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1-T solenoid field reduces the resistance by 20%–25%
because it decreases the thermal conductivity of the
plasma, enabling the temperature to run higher. Note that
while the analytic model gives a reasonable portrayal of the
Ez vs I scaling (i.e., the�I2=5 dependence), its constant of
proportionality is 25%–100% too high depending on the
value of I and Bz.

The on-axis plasma temperature T0 depends on the
discharge current I. Figure 4 shows the effect of discharge
current and applied solenoid field on T0. The scaling T0 �

I2=5 predicted by the analytic model [see Eq. (B1)] is for
the case with no solenoid field. In predicting T0, the
analytic model yields a constant of proportionality closer
to the quasistatic model. When a solenoid field is added,
the temperature rises sharply.

Without the solenoid field, we note that T0 is in the same
range, 3–7 eV, observed in discharges at much higher
plasma densities modeled elsewhere [14–16]. These tem-
peratures are high enough that the fully ionized approxi-
mation is valid. This near-complete ionization in gas-filled
capillaries has been experimentally verified elsewhere
[18].

The central hollow in the plasma density in the center of
the capillary is crucial for guiding the laser beam.
However, complicating this is the pinch effect. If pinching
is negligible, then the pressure profile is uniform and the
falling temperature toward the capillary wall guarantees a
rising density. Negligible pinch effect is a very good ap-
proximation for capillary discharges at high plasma den-
sities, e.g., * 1018 cm�3 [14–16]. However, at low
densities, e.g., 1016–1017 cm�3, it can be more important
depending on the amount of discharge current. The pinch
effect pushes the plasma inward from the wall, thereby
causing the pressure to fall near the wall. This pulls the
density down near the edge, diminishing the laser guiding
effect.

Figure 5 shows the computed density and pressure pro-
files for a fixed current I � 100 A. The pinch effect is
beginning to manifest itself as evident by the fall in pres-
sure near the wall. Recall the analytic model does not
include any pinch effect, hence, its pressure is constant
with radius and the density profile follows the nominal
quasiparabolic shape. With the pinch effect, the quasistatic
model indicates a slight altering of the parabolic profile
with and without the solenoid B-field, but in this case it is
not enough to be significant. At higher currents, e.g., I �
300 A, the pinch effect can be strong enough that the
density in the center of the plasma actually has an inverted
profile with a slight maximum on axis.

Figure 6 shows the damage index ratio R0=WM predicted
by the quasistatic and analytic models as a function of
plasma current and solenoid field. For the analytic approxi-
mation, the spot size given by Eq. (B3) leads to an ex-
pression for the simple damage index of R0=WM �

1:35�R0=�p0�
1=2, where �p0 is the plasma wavelength at

the axis. Note that the analytic model with its limited
physics is the most pessimistic. The quasistatic model
predicts higher ratios with the solenoid B-field giving the
highest index values for the range of currents shown.

FIG. 4. (Color) Quasistatic model predictions for on-axis tem-
perature versus capillary discharge current with R0 � 250 �m
and n0 � 4� 1016 cm�3. Bz is the external solenoid field.

FIG. 5. (Color) Quasistatic model predictions for plasma density
and pressure versus radius for I � 100 A with R0 � 250 �m
and n0 � 4� 1016 cm�3. Bz is the external solenoid field.
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The density profile near the capillary wall is ‘‘super-
quadratic,’’ in that n rises much faster than r2 near the wall
as shown in Fig. 2. This edge layer serves to shield the
capillary wall from the laser beam in the sense that it will
reduce the field in this region because of its higher refrac-
tive index.

Thus, the simple R0=WM damage criterion can be en-
hanced to reflect the nonparabolic nature of the density
profile near the wall. An improved damage index can be
devised based on the actual maximum electric field at the
wall surface (r � R0

�). Consider the following improved
definition for the damage index:

 D 	 ln�E0=jE2
r � E2

z jr�R�0 �; (13)

which represents the number of e-folds that the field falls
between the axis and the wall surface. As an example, for a
pure Gaussian beam where the plasma field E�R0

�) and the
wall field E�R0

�� are assumed to be identical, the damage
index is D � DGaussian � �R0=WM�

2, i.e., the square of the
simple damage index. Because the density profile in the
channel is not purely parabolic, the laser profile in the
channel will not be purely Gaussian. A method for com-
puting the actual, non-Gaussian laser profile and the en-
hanced damage index D is described in Appendix C.

C. Predictions for STELLA-LW experiment

To illustrate the application of the quasistatic model to
LWFA experiments, Table II lists the model results for

conditions representative of the planned STELLA-LW
pseudoresonant LWFA and seeded SM-LWFA experiments
with the exception of the solenoid B-field. The results in
Table II assume a 0.3 T solenoid field; whereas, the
STELLA-LW LWFA experiments are not presently using
an external B-field.

The average plasma densities hni in Table II are what are
needed to achieve the target on-axis densities for the
pseudoresonant LWFA and seeded SM-LWFA experiments
(see Sec. III B).

For the 2.5 TW peak power that is anticipated to be
available from the ATF CO2 laser, the pseudoresonant
LWFA experiment requires a matching laser waist size of
WM � 145 �m. To achieve this, the quasistatic model
indicates the channel radius must be R0 � 160 �m with
I � 17 A. This is the result of the much weaker refractive
power of low-density plasmas. This yields a very low ratio
for R0=WM.

For the seeded SM-LWFA experiment, the laser peak
power will be�0:5 TW, which is sufficient for amplifying
the wakefield produced by the seed e-beam pulse. The laser
beam spot size (157 mm) is still comparable to the pseu-
doresonant case. However, although the laser beam size is
similar, the higher plasma density of the seeded SM-LWFA
experiment means the required channel size is much larger,
i.e., R0 � 450 �m and the current can be higher, i.e., I �
158 A. The larger channel radius means R0=WM is close to
3 for the seeded SM-LWFA experiment, which implies that
laser damage of the capillary will probably not be an issue.

Table II also shows the damage index D based on the
actual computed fields. The range of displayed values for
D corresponds to the range of wall skin depths 	w � 2� to
0:5�, where � is the laser wavelength. A range is needed
since the dielectric constant at � � 10:6 �m of the capil-
lary wall material (i.e., MacorTM machinable ceramic)
used during the STELLA-LW experiment is unknown.
For comparison, Table II also gives the damage index if
the laser profile retained a Gaussian profile to the edge, i.e.,
DGaussian � �R0=W�

2. For the pseudoresonant LWFA case,
D has values approaching 3, which is a considerable im-
provement over the simple damage index ratio of 1.25
assuming a Gaussian beam.

IV. CONCLUSION

The quasistatic capillary model has proven to be a very
useful and easy-to-use design tool. Its comprehensive in-
clusion of the plasma physics and fluid equations, and its
agreement with the fully time-dependent model of

TABLE II. Capillary results and predictions for STELLA-LW experiment assuming an external B-field of 0.3 T.

LWFA Method Bzw (T) hni (1017 cm�3) R0 (�m) T0 (eV) I (A) R0=WM DGaussian D

Pseudoresonant LWFA 0.3 0.165 160 3.3 17 1.1 1.25 2.0–3.3
Seeded SM-LWFA 0.3 1.29 450 4 158 2.87 9.9 7.7–8.7

FIG. 6. (Color) Quasistatic model predictions for damage
index ratio versus current with R0 � 250 �m and n0 �
4� 1016 cm�3. Bz is the external solenoid field.
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Bobrova, gives us confidence in its accuracy. The model
has been used to design the STELLA-LW capillaries for
two different LWFA experiments. It has helped identify
where laser damage of the capillaries may be an issue and
possible ways this might be mitigated (e.g., addition of
solenoid B-field).
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APPENDIX A: BRAGINSKII TRANSPORT
COEFFICIENTS IN THE 1D CAPILLARY MODEL

Various transport coefficients �0
k
, �0?, �0uT� , �0i, �

0
e, and

�?0 are taken from Braginskii [17]. The following units
will be employed: R0�m�, n�m�3�, T�eV�, B��T�, the
plasma pressure p�J=m3�, the electron collision time with
ions 
e;i�s�, and ��Ohm-m�. The electron collision time is

 
e � 3:44� 1011T3=2=n ln�; (A1)

where the Coulomb logarithm for hydrogen is

 ln� �
�

29:9� ln�T3=2=n1=2; T < 10 eV
30:9� ln�T=n1=2�; T 
 10 eV

�
: (A2)

Since the model assumes charge and atomic mass equal to
1 and Ti � Te � T, the ion collision time is longer by a
fixed ratio 
i=
e � 60:76.

The electron magnetization is

 xe 	 �eB=me�
e � 1:760� 1011B
e; (A3)

where B � �B2
� � B

2
z�

1=2. Note the ion magnetization is
smaller by a fixed ratio xi=xe � 0:033 32 because Ti �
Te � T.

Interspecies friction springs both from electron flow and
electron temperature gradient. In Braginskii’s terminology,
the friction force density associated with electron flow is

 R u � ��kuek � �?ue? � ��b� ue: (A4)

We adopt dimensionless forms of the Braginskii’s coef-
ficients, i.e., �0

jj
	 �jj=e2n2�?0 and �0uT� 	 �xe=n��uT� .

Then the velocity-related friction forces in the 1D capillary
geometry are

 Ru�=en � �?0���0kb
2
� � �

0
?b

2
z�j� � ��0k � �

0
?�b�bzjz�;

(A5)

 Ruz=en � �?0���0k � �
0
?�b�bzj� � ��

0
k
b2
z � �0?b

2
��jz�:

(A6)

Here the resistivity �?0 � me=e
2n
e is the fully magne-

tized value.
In Braginskii’s terminology, the friction force density

associated with electron temperature gradient is

 R T � ��
uT
k
rkkTe � �

uT
? r?kTe � �

uT
� b� rkTe:

(A7)

Then, the thermal friction forces are
 

RT�
en
� �

�?0

�0

�
4
�0uT� Bz

�
1

T
dT
dr

�
;

RTz
en
�
�?0

�0

�
4
�0uT� B�

�
1

T
dT
dr

�
:

(A8)

The coefficients are functions of the electron magneti-
zation xe 	 !ce
e. For Z � 1
 

�0
k
� 0:5129;

�0? � 1� �6:416x2
e � 1:837�=�e;

�0uT� � x2
e�1:5x2

e � 3:053�=�e;

�e � x4
e � 14:79x2

e � 3:7703 . . . :

(A9)

Heat conduction can arise from the temperature gra-
dient, and in the case of the electrons, from electron flow
across the magnetic field. The heat flows from the tem-
perature gradient for the two species are

 q e
T � ��

e
jj
rkTe � �e?r?Te � �

e
��b� rTe; (A10)

 q i
T � ��

i
k
rkTi � �i?r?Ti � �

i
��b� rTi; (A11)

where we have defined dimensionless forms of the thermal
conduction coefficients using the fully magnetized resis-
tivity, �e?=nk � ��?0=�0��

0
e and �i?=nk � ��?0=�0��

0
i.

Thus, the dimensionless conduction coefficients are

 �0e? �
�
4

x2
e�4:664x2

e � 11:92�

�e
; (A12)

 �0i? � 7:5543�
x2
i �2x

2
i � 2:645�

�i
; (A13)

where �i � x4
i � 2:70x2

i � 0:677.
The thermal fluxes are then given by

 qeT;r � �
�?0

�0
�0e
�
4

B2

�0

�
1

T
dT
dr

�
;

qiT;r � �
�?0

�0
�0i
�
4

B2

�0

�
1

T
dT
dr

�
:

(A14)

Electron heat flux is also driven by electron flow per-
pendicular to the magnetic field. In Braginskii’s terminol-
ogy this is expressed as
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 q e
u � �Tu

k
uk � �Tu? u? � �Tu� b� u: (A15)

This yields an electron flow-driven heat flux of

 �qeu�r �
�?0

�0

�
4
�0uT� ��B�jz � Bzj��: (A16)

APPENDIX B: SIMPLE ANALYTIC MODEL OF
CAPILLARY

Besides the comprehensive, time-dependent model, the
Bobrova paper [14] also included a quasianalytic approxi-
mation of the temperature profile in a capillary discharge.
This quasianalytic model yields simple expressions linking
the various design parameters. As such it offers a useful
reference point for comparison with the numerical results
from the more complete physical model presented here.
We have slightly modified the Bobrova quasianalytic
model by assuming the unmagnetized forms for both the
electron thermal conductivity (�0 / T5=2) and electrical
resistivity (�0 / T

�3=2), where T is the local temperature.
This is more consistent than the magnetized resistivity and
unmagnetized conductivity assumed by Bobrova.

In the quasianalytic model, uniform pressure is assumed
(no pinch effect) and the wall temperature is set to zero.
This reduces the energy balance to an eigenvalue problem
that can be solved by a single integration. The relationships
between the various parameters are T0 � 0:17�0I

2=�0R
2
0,

hni � 1:55n0, and Ez � 0:47�0I=R
2
0. Then, the axis tem-

perature and longitudinal electric field in MKS-eVunits are
given by the expressions

 T0 � 0:0123�I ln�=R0�
2=5; (B1)

 Ez � 0:0181�I ln��2=5=R7=5
0 : (B2)

As a representative example, if I � 300 A, ln� � 8, R0 �
250 �m, then T0 � 7:66 eV and Ez � 45:0 kV=m. The
laser-channeling spot size is

 W � 0:7424
�����������
�pR0

q
; (B3)

where �p��m� � 3:34� 1010�ne�cm�3���1=2 is the
plasma wavelength. This expression is based on the as-
sumption of an approximate parabolic density profile n �
n0�1� 0:0334�r=R0�

2 � 
 
 
� near the axis for the analytic
solution.

APPENDIX C: LASER PROFILE FOR
NONPARABOLIC DENSITY PROFILES

The damage index depends on the electric field at the
capillary wall. This can be found by solving Maxwell’s
equations. An electromagnetic wave propagating in a re-
gion with axisymmetric dielelectric constant ��r� is gov-

erned by

 �r2 � "!2=c2�E� r��xEx � yEy�d�ln"�=dr� � 0:

(C1)

The second term, which involves gradients of ��r�,
couples the field components so that a purely linearized
polarization is not possible. However, the coupling is quite
weak, as will be verified later. Ignoring this coupling,
consider a nonevolving (constant spot size) laser beam
with linear polarization E � E0x̂’�r�eikz, where the pro-
file function ’ is unity at the axis, ’�0� � 1. Then

 

�
1

r
d
dr

�
r
d
dr

�
� �2

�
’ � 0; (C2)

where the space-dependent radial structure parameter is
�2�r� 	 "�r�!2=c2 � k2. The corresponding longitudinal
field, Ez � �i=k�E0�x=r�d’=dr, has a maximum at y � 0,
x � r. The dielectric function for a plasma is � �
1� n=nc, where nc � �=re�2 is the critical density. For
a purely parabolic density profile, the solution to Eq. (C2)
is ’ � exp��r2=WM

2�.
The plasma region solution (r � R0) must be matched to

the solution in the capillary material, which is governed by
the same equation, but with a different and uniform dielec-
tric constant "w. Suppose that the field is evanescent in the
wall with a skin depth 	w � R0. Then the wall solution is
’ � ’w exp���r� R0�=	w� and the longitudinal field for
x � r is Ez � ��i=k	w�E0’�r�. The plasma and wall
solutions are matched using jump conditions from
Maxwell’s equations ��Ez�� � 0 and ��"En�� � 0, where
��
 
 
�� denotes the jump at r � R0. This gives rise to an
eigenvalue problem, which can be solved using a numeri-
cal algorithm based on the shooting method and a Runge-
Kutta integrator. Representative results for the value of D
for non-Gaussian cases are presented in Sec. III C.

The coupled-polarization case, which includes the gra-
dient term in Eq. (C1), was also solved approximately by
treating the problem as if it were axisymmetric, replacing x
where it appears by r. The results for the damage index
with polarization-coupling differed from the decoupled
case by less than 0.1%.
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